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LE’lTER TO THE EDITOR 

Hamiltonian path integrals in n dimensions 

J C Martinez 
Department of Physics, National University of Singapore, Kent Ridge Singapore 051 1 

Received 9 May 1986 

Abstract. Using Hamiltonian path integrals we obtain the spurious potential term that 
arises in the action when a path integral is transformed to general n-dimensional 
coordinates. 

It is widely recognised that when a non-linear point transformation is applied to a 
path integral the effective action generally picks up a spurious potential term of order 
hZ (DeWitt 1957). A concrete example of this phenomenon is seen in the transformation 
of the path integral for a free particle in Cartesian coordinates to polar coordinates 
(Edwards and Gulyaev 1964, Peak and Inomata 1968, Lee 1981). The precise form 
of this term depends on how the path integral is formulated (Salomonson 1977). 

Point transformations have always played a special role in physics. The difficulties 
attendant to their application to path integrals can be readily appreciated by noting 
that only recently has the hydrogen atom been solved within this formulation (Ho and 
Inomata 1982). In many instances canonical transformations, which are best developed 
with a Hamiltonian formulation, lead to deeper understanding of physical theories. 

In general the derivation of the spurious potential term is based on a Lagrangian 
path integral (Gervais and Jevicki 1976, Mayes and Dowker 1972, Arthurs 1970a, b). 
Over the past decade, however, there has been much interest in Hamiltonian path 
integrals (a discussion is given in Schulman (1981)). In this letter we obtain an 
expression for this term in a general n-dimensional coordinate system using Hamil- 
tonian path integrals and following a procedure advocated by Kapoor (1984). We 
also show that the result is identical to that obtained using the canonical procedure. 
The potential does not vanish even in flat space. 

By Hamiltonian path integral we understand the form 

(q” t” /  q ‘ f ’ )  = I dp(q”t”lpt)(pt 1 q’t‘)  

for the transition amplitude. Here ( q ” t ” l p t )  = (q”le-’H(”’-’)~ p ) ,  etc. For Lagrangian 
path integrals one uses Jqt)dq(qrl for the unit operator (Garrod 1966). 

We begin with a free particle of unit mass in h dimensions whose Lagrangian takes 
the form 

L = ;g,]q‘$ i , j = 1 , 2  , . . . ,  n (1) 
where the summation convention is implied. The g ,  are components of the metric 
tensor which we consider to be a function of the coordinates 4’. Dots stand for 
differentiation with respect to time f .  The equations of motion are 

(2) $l=-ri $ 4 k  
Ik 
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where the r j k  are the Christoffel symbols 
r! = L  im 

j k  2 g  (g jm,k  + gkm,j  - gjk ,m)  

k 
gjm,k = J g j m I J q  . 

Equation (2) allows us to show that L is time independent so that the action S for a 
small time interval E may be written 

r + E  

S[q(  t + E ) ;  q (  t ) ]  = L d t  = & g y ( f ) q i (  t ) # (  t ) .  (3) 

The momenta conjugate to qi  are 

pi = JL/aqi = g”#. 

Following DeWitt (1957) we will adopt the convention 

(4) 

q” = qi( t )  

q”i = qi( t + E )  

P I  E p i ( t )  

p ;  =pi ( t  + E )  
( 5 )  

and similarly for functions of these variables. 

this end we expand g’” as follows: 
In what follows it will be convenient to write (3) as a function of q” and of p’ .  To 

g’” = g ” t )  = g” t  + E )  - E q k ( t  + & ) g : ; ( t  + E ) + O ( E 2 )  

( 6 )  = gdj - E p r  g!rkm nij 
m g , k  + O ( E 2 ) .  

Similarly we have 
q t i  = - & q f i  -1 2 - t i  

2-5 9 
= qrri - E g r i j p ;  + ;E2r ;ng ’mlg ’n jp ;p j  

= q i f i  - Egvijp; + E 2 ( t r G n g m l g s n J  + gnklg;;)p;p; + 0 ( & 3 )  (7) 

(8) 

where we have used (2) and ( 6 ) .  We may now write the action as 

Ephg’fk”g;; + . . . ] p j .  S[@’;  q ’ ]  = f E P ; q ”  =;&p;[gK 

We are now in a position to write an expression for the transition amplitude. The 
transition amplitude 

( q ” ,  t”I 4’9 t’> = J” dp(q”, t’’IP, t> (P ,  t l  q’ ,  r’> (9) 

may be evaluated by using (DeWitt 1957, Kapoor 1984) the following forms for the 
short-time propagators: 

where t = t ” -  E,  g is the determinant of the metric tensor and S + + ( S - - )  is the generator 
of the canonical transformation taking p ( t )  to q ( t ” ) ( q ( t ’ )  to p ( t ) ) .  The D are the van 
Vleck determinants 
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where we have denoted the coordinates and momenta at time t by q i  and p i .  We also 
have 

S++[q“; PI = p q  + S[q” ;  SI (11) 

where S[q” ,  q ]  is the action (2). 
With the aid of (7) we may write 

s++[q+l; = p i q l l i  - + g l l i j p p g j  + $ 2 ( r ~ n g ~ ~ m f g n n j  + g~ikfg;;)pipjpf  + o( E 3 ) .  (12) 

The van Vleck determinant is then 

D++ = det ~ I aq’!’ap a2S++ i I 
where 

Wyifk = ( T ~ n g r r m ’ g ‘ ’ n k ) , j  + (cyclic combinations of i, 1, k )  

making use of the expansion 

det)l  + 81 = 1 +Tr B +f(Tr B)’ -fTr B 2 + .  , 

we find 

D++ = 1 - eg:”pJ - i&2r;kvpplpJ +. . . 
where 
r n k v  = rrkl IIIJ - 1rJf  rrki - rrkj IIII llml !!nJ rrkm IInJ rrkm unt g +r%,kg 8 k -g,k g , f  g,k g,f g,k g , f  s rk t ,kg  g + r : n , k 8  

(14) 

We will denote the integrand of (9) by K and employ the expressions (10) for 
them. To obtain the equation satisfied by the transition amplitude let us consider the 
expression 

where 

is just the Laplace operator in n dimensions (Marinov 1980). Some simplification in 
the above may be effected if we use the Hamilton-Jacobi equation (DeWitt 1957) 

H being the Hamiltonian. In the limit E + 0 we obtain 

(16) 

It is not difficult to see that the same equation is satisfied by the transition amplitude. 
This is our generalisation of Kapoor’s result. The effect of a scalar potential u ( q )  is 
to include a term -uK on the right-hand side of (16). 

( ~ - i -  sat) k = l (  4 g.1 r n k  k $1 2g In r l k r n j + g f n r k i , f ) K *  k J 
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The term on the right-hand side of (16) is the extra potential term. In general it 
is non-zero even in flat space. To see this we rewrite it as 

$[ - R  - tgmn (rp,,,, - 2r:,,l + ~ $ ; J ] K  (17) 

where R is the scalar curvature 

R =gk’(r;,, -r;,,l+rflr:,-rflr:I). 
The extra potential term is independent of the external potential: it is a property of 
the coordinate system used. For polar coordinates it is just - (8r2 ) - !K .  For spherical 
coordinates it is -(8r2)-’(l +coset' B)K. 

Finally we derive (16) using the canonical operator method. For the free particle 
case we have (Marinov 1980) 

with the commutation relations 

The Hamiltonian operator fi is given by 

A = ; t ig  V i j .  
Expanding fi we find 

A = - ;A + $(gjl’r;l + t g VrTj,r f;, + gqrf,i).  

The second term arises from operator ordering and can be readily shown to be identical 
to the right-hand side of (16). Clearly this potential is of order A’. 
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